Simultaneous Quantile Inference for Non-stationary Long-memory Time Series
نویسنده
چکیده
We consider the simultaneous or functional inference of time-varying quantile curves for a class of non-stationary long-memory time series. New uniform Bahadur representations and Gaussian approximation schemes are established for a broad class of non-stationary long-memory linear processes. Furthermore, an asymptotic distribution theory is developed for the maxima of a class of non-stationary longmemory Gaussian processes. Using the latter theoretical results, simultaneous confidence bands for the aforementioned quantile curves with asymptotically correct coverage probabilities are constructed.
منابع مشابه
Nonparametric Inference for Time-varying Coefficient Quantile Regression
The paper considers nonparametric inference for quantile regression models with time-varying coefficients. The errors and covariates of the regression are assumed to belong to a general class of locally stationary processes and are allowed to be cross-correlated. Simultaneous confidence tubes (SCT) and integrated squared difference tests (ISDT) are proposed for simultaneous nonparametric infere...
متن کاملFrontiers in Time Series and Financial Econometrics: An Overview
Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملInference of trends in time series
We consider statistical inference of trends in mean non-stationary models. A test statistic is proposed for the existence of structural breaks in trends. Based on a strong invariance principle of stationary processes, we construct simultaneous confidence bands with asymptotically correct nominal coverage probabilities. The results are applied to global warming temperature data and Nile river fl...
متن کاملSimultaneous inference of linear models with time varying coefficients
The paper considers construction of simultaneous confidence tubes for time varying regression coefficients in functional linear models. Using a Gaussian approximation result for non-stationary multiple time series, we show that the constructed simultaneous confidence tubes have asymptotically correct nominal coverage probabilities. Our results are applied to the problem of testing whether the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014